Ricerca > Industria > Food > Applicazione: Seafood


Nomi comuni per soluzioni di acido ipocloroso


  • Electrolytically Generated Hypochlorous Acid
  • Neutral Electrolyzed Water (NEW)
  • Electrolyzed Oxidizing Water (EOW)
  • Electro-chemically Activated Water (ECA)
  • Super-oxidized water (SOW)


Risultati: 36 articoli pubblicati


Journal Cover

Microbe(s): Listeria monocytogenes, Escherichia coli, Vibrio parahaemolyticus


Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.



Journal Cover

Microbe(s): Pseudomonas spp.,Shewanella spp.


The bacterial species and specific spoilage organisms associated with the Southern Australian King George Whiting (KGW) and Tasmanian Atlantic Salmon (TAS), and the efficacy of a HOCl-containing water-based sanitization product (Electro-Chemically Activated Solution, by ECAS4) in extending the shelf life of KGW and TAS fillets were evaluated. Fillets were washed with an ECAS4 solution containing either 45 ppm or 150 ppm of free chlorine and bacterial species enumerated on out many of the disadvantages of currently approved biocides.



Journal Cover

Microbe(s): Total Microbial Count


Squid is considered as a healthy food by consumers becaof its high nutritive value. However, it is easily decay caused by microbial contamination. This study aimed to investigate the effect of slightly acidic electrolyzed water ice (SAEW-ice) on preservation of squid. Five groups (untreated with ice (A), squid placed on the tap water (TW) ice (B) or SAEW ice (C), squid placed in the TW ice layers (D) or SAEW ice layers (E)) were conducted to evaluate the changes of sensory properties, microbial loads, pH value, peroxide value (POV), thiobarbituric acid (TBA) and total volatile basic nitrogen (TVBN) contents during the shelf life tests. The results showed that SAEW-ice was more efficient at maintaining the squid quality during storage than TW-ice. The total bacterial counts were significantly reduced by 1.46 0.10 log10 CFU/g treated by SAEW-ice and maintained relatively slow microbial growth during storage. It was also observed that SAEW-ice treatment delayed the appearance of browning and softening. Furthermore, SAEW-ice treatment also inhibited the increase of POV and maintained relatively low TBA and TVBN contents. These data indicated that SAEW-ice had the potential to ensure the microbial safety and control the quality deterioration of squid during storage, which could be a new approach worthy of further investigation.



Journal Cover

Microbe(s): Staphylococcus aureus


Slightly acidic electrolyzed water (SAEW), considered as a broad-spectrum and high-performance bactericide are increasingly applied in the food industry. However, its disinfection mechanism has not been completely elucidated. This study aims to examine the disinfection efficacy and mechanism of SAEW on Staphylococcus aureus, compared with that of sodium hypochlorite (NaClO) and hydrochloric acid (HCl). SAEW treatment significantly reduced S. aureus by 5.8 log CFU/mL in 1 min, while 3.26 and 2.73 log reductions were obtained with NaClO and HCl treatments, respectively. A series of biological changes including intracellular potassium leakage, TTC-dehydrogenase relative activity and bacterial ultrastructure destruction were studied following disinfection treatment of S. aureus. The results showed that SAEW decreased the relative activity of TTC-dehydrogenase by 65.84%. Comparing intracellular potassium leakage, the SAEW treatment caused a greater percent of protein leakage (108.34%) than the NaClO (18.75%) or HCl (0.84%) treatments. These results demonstrated the potent impact SAEW had on the permeability of cell membranes. In addition, the ranking of partly agglutinated cellular inclusion formation was HCl > SAEW > NaClO. It appeared that HCl, along with its low pH value, are responsible for most of the cytoplasmic disruptions. Overall, this study demonstrated that the disinfection mechanism of SAEW was disrupting the permeability of cell membrane and the cytoplasmic ultrastructures in S. aureus cells.



Journal Cover

Microbe(s): Listeria monocytogenes


Listeria monocytogenes contamination in ready-to-eat (RTE) fish products, in particular in cold-smoked salmon is an important food safety concern. This study evaluated the antimicrobial activity of electrolyzed oxidizing (EO) water as a pretreatment method during the process of cold-smoked salmon to inactivate L. monocytogenes. In addition, the effect of EO water treatment on the sensory and textural quality of the final product was also evaluated. Raw Atlantic salmon (Salmo salar) fillets were inoculated with L. monocytogenes (with an approximately cell number of 6 105 CFU/g L. monocytogenes ATCC 19114) and treated with EO water at three different temperatures (20, 30, and 40 C) and at three different exposure time of 2, 6, and 10 min before the cold-smoking process. A combination of EO water and a mild temperature (40 C) had reduced L. monocytogenes populations by 2.85 log10 CFU/g. The sensory as evaluated by a consumer panel (N = 71) and texture, which was measured by texture analysis showed no significant changes between EO and mild temperature treated samples and the control.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.



Journal Cover

Microbe(s): Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus, Campylobacter jejuni


The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hyrol possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish.



Journal Cover

Microbe(s): Total Microbial Count


This paper discussed the effectiveness of using electrolyzed (EO) water for shelf-life extension for aquatic foods including live shellfish, and for sanitizing water and food contact surfaces. Highlight focused on the effectiveness of EO water on microorganisms and on the different parameters affecting efficacy which includes organic matter, exposure time, temperature, EO water properties, and inactivation of microbes.



Journal Cover

Microbe(s): MNV-1, Norovirus, HAV, Hepatitis A


The ability of acidic electrolyzed oxidizing water (AEO) and neutral electrolyzed oxidizing water (NEO) to inactivate the murine norovirus (MNV-1) surrogate for human norovirus and hepatitis A virus (HAV) in suspension and on stainless steel coupons in the presence of organic matter was investigated. Viruses containing tryptone (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0) were mixed with AEO and NEO for 1 min. In addition, stainless steel coupons containing MNV-1 with or without organic matter were treated with AEO or NEO for 3, 5, and 10 min. AEO was proven effective and generally killed more MNV-1 and HAV in suspension than NEO. Depending on the EO water generator, free chlorine concentrations are required to inactivate MNV-1 and HAV by 3-log PFU/mL or greater ranged from 30 mg/L to 40 mg/L after a 1 min contact time. The virucidal effect increased with increasing free chlorine concentration and decreased with increasing tryptone concentration in suspension. Both AEO and NEO at 70100 mg/L of free chlorine concentration significantly reduced MNV-1 on coupons in the absence of organic matter. However, there was no significant difference between these two treatments in the presence of organic matter. In addition, the efficacy of these two EO waters on stainless steel coupons increased with the increasing treatment time. Results indicated that AEO and NEO can reduce MNV-1 and HAV in suspension. However, higher free chlorine concentrations and longer treatment times may be necessary to reduce viruses on contact surfaces or in the presence of organic matter.



Journal Cover

Microbe(s): Escherichia coli, Vibrio parahaemolyticus


The aim of this study was to determine the combined effects of slightly acidic electrolyzed water SAEW (pH range 5.06.5, oxidationreduction potential 6501000 mV, available chlorine concentration 1080 mg/L) containing 0, 15, and 30 ppm chlorine and 0, 50, and 100 min of ultrasound US (37 kHz, 380 W) using the central composite design (CCD) on the reductions of Escherichia coli and Vibrio parahaemolyticus (initial value, approximately 67 log10 colony forming unit (CFU) of E. coli or V. parahaemolyticus/g) and the sensory properties on freshly sliced shad (Konosirus punctatus), in comparison with SAEW or US alone. Another aim was to develop the response surface model for E. coli and V. parahaemolyticus in the shad treated with the combination of SAEW and US. Single treatments with SAEW (chlorine 15 ppm), SAEW (chlorine 30 ppm), or US for 50 min caused a much-less-than-1-log10 reduction in the number of both E. coli and V. parahaemolyticus in the shad. In contrast, the combination of SAEW (15 or 30 ppm chlorine) and US (50 or 100 min) caused >1-log10 reduction of E. coli numbers (1.041.86 log reduction) and V. parahaemolyticus (1.021.42 log reduction) in the shad. In addition, the sensory properties of the shad were not changed under the harshest conditions of the combination (SAEW with chlorine at 30 ppm and US for 100 min). Response surface models were developed for the population of E. coli (Y=6.153220.024732X 10.016486X 20.00015X 1 X 20.00024X 1 20.00007X 2 2) and V. parahaemolyticus (Y=5.676490.042598X 10.014013X 20.00003X 1 X 20.00006X 1 20.00062X 2 2 ), where Y is the bacterial population (log10 CFU), X 1 is ppm chlorine in SAEW, and X 2 is the duration of treatment (min) with US. The appropriateness of the models was verified by bias factor (B f 1.10 for E. coli, 1.03 for V. parahaemolyticus), accuracy factor (A f 1.11 for E. coli, 1.05 for V. parahaemolyticus), mean square error (MSE 0.0087 for E. coli, 0.0028 for V. parahaemolyticus), and coefficient of determination (R 2 0.976 for E. coli, 0.982 for V. parahaemolyticus). To produce a 1-log10 reduction of E. coli and V. parahaemolyticus, US treatment times for E. coli and V. parahaemolyticus were calculated within the maximum of 54 and 67 min, respectively, at chlorine 10 ppm in SAEW. SAEW chlorine concentrations (ppm) for E. coli and V. parahaemolyticus were calculated within the maximum of 38 and 41 ppm, respectively, at 20 min of US. Therefore, the resulting response surface models for E. coli and V. parahaemolyticus should be further validated on slices of other kinds of raw fish. Ultimately, the response surface quadratic polynomial equations may thus be used for predicting the combined treatments of SAEW and against E. coli and V. parahaemolyticus in raw fish production, processing, and distribution.



Journal Cover

Microbe(s): Total Microbial Count


The combined effect of weakly acidic electrolyzed water (WAEW) ice-glazing and modified atmosphere packaging (MAP) treatment on the quality of pacific white shrimp (Litopenaeus vannamei) during frozen storage was investigated in terms of microbiological activity, TVBN, TMA and TBARS content, texture, color and volatile flavor analysis. As a result, significantly (p < 0.05) higher inhibitor effects on total aerobes and Staphylococcus aureus were observed in WAEW ice-glazed shrimp packaged in 40% CO2 + 10% O2 + 50% N2 or in 30% CO2 + 20% O2 + 50% N2 than the water- and WAEW ice-glazed batches. Additionally, chemical analysis results showed that WAEW ice-glazing combined with MAP was highly effective in maintaining lower TVBN, TMA and TBARS values in frozen shrimp, perhaps due to the synergistic effect of antibacterial and antioxidant abilities. On the other hand, the texture, L*, and a* results also confirmed that this combined treatment effectively retarded the degradation of the physical structure of shrimp muscle and showed a positive effect on the stability of color during frozen storage. However, the presence of WAEW ice-glaze showed a negative effect on the volatile flavor of thawed shrimp due to the volatile chlorine and chlorine dioxide, but no significant effect in the cooked samples. Overall, the application of WAEW ice-glazing combined with MAP on peeled frozen shrimp is advisable to achieve better quality maintenance and extend the shelf-life of refrigerated products.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


The bactericidal effects of strongly acidic hypochlorous acid water (StAHA) and slightly acidic hypochlorous acid water (SlAHA) against Vibrio parahaemolyticus contaminated on surface of raw fish and shellfish were examined. V. parahaemolyticus contaminated with about 7.0 log CFU/g on the meat chunk of olive flounder (Paralichthys olivaceus), and yellow tail (Seriola quinqueradiata), and 4.0 log CFU/g on the shucked scallop (Patinopecten yessoensis) were not detected after washing with StAHA and SlAHA at a ratio of 30:1 on a sample weight basis. However, 1.0 log CFU/g of V. parahaemolyticus was survived on shucked oyster (Crassostrea gigas) under same treatment conditions. The bactericidal effects of acidic hypochlorous acid water against V. parahaemolyticus contaminated on surface of shucked oyster were not as effective as those against V. parahaemolyticus contaminated on surface of meat chunk of olive flounder, yellow tail, and shucked scallop. Such differences can be attributed to the complicated surface conformation of oyster.



Journal Cover

Microbe(s): Escherichia coli O157:H7 Salmonella Typhimurium, Listeria monocytogenes


The bactericidal efficacy of acidic electrolyzed oxidizing water (AC-EW) (pH = 2.30, free chlorine = 38 ppm) and sterile distilled water (DW) on three pathogens (Escherichia coli O157:H7 Salmonella Typhimurium, and Listeria monocytogenes) inoculated on raw trout skin, chicken legs and beef meat surfaces was evaluated. The decontaminating effect of AC-EW and DW was tested for 0 (control), 1, 3, 5 and 10 min at 22 C. AC-EW significantly (P < 0.05) reduced the three pathogens in the inoculated samples compared to the control and DW. The level of reduction ranged between ca.1.5 1.6 logs for E. coli O157:H7 and S. Typhimurium in the inoculated foods. However, AC-EW exhibited less bactericidal effect against L. monocytogenes (1.1 1.3 logs reduction). AC-EW elicited about 1.6 2.0 log reduction in the total mesophilic count. Similar treatment with DW reduced pathogens load by ca. 0.2 1.0 log reduction and total mesophiles by ca. 0.5 0.7 logs. No complete elimination of the three pathogens was obtained using AC-EW possibly because of the level of organic matter and blood moving from food samples to the AC-EW solution. This study demonstrates that AC-EW could considerably reduce common foodborne pathogens in fish, chicken and beef products.



Journal Cover

Microbe(s): Total Microbial Count


Preliminary mechanism of acidic electrolyzed water (AEW) ice on improving the quality and safety of shrimp was investigated by examining the physicochemical and microbiological changes, sarcoplasmic proteins and enzymatic activities. The results showed that compared with tap water (TW) ice, AEW ice had an obvious (p < 0.05) capability in limiting the changes of pH and shrinkage of muscle fibers in shrimp. Plate count enumeration and PCRDGGE indicated that AEW greatly inhibited growth of bacteria on shrimp. Additionally, AEW ice had no adverse effects on sarcoplasmic proteins by SDSPAGE method. And AEW ice displayed inhibitory activity (p < 0.05) toward cathepsin B and polyphenol oxidase (PPO), although it did not present positive effects on inhibiting cathepsin D, acid phosphatase and lipase activity. Thus, this study brought new evidence to further demonstrate that AEW ice can serve as a promising technology for improving the quality of aquatic products in food industry.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


Vibrio parahaemolyticus is the leading cause of seafood-derived illness in China and a possible mechanism leading to illness is cross contamination of cooked shrimp. The objective of this study was to establish a mathematical model of the inactivation of V. parahaemolyticus on cooked shrimp by acidic electrolyzed water (AEW) as a function of three variables (NaCl concentration to electrolysis, X1; treatment time, X2; treatment temperature, X3) and to define priority factors which can significantly enhance the bactericidal efficiency to reduce the risk of illness caused by V. parahaemolyticus. The combined effects of NaCl concentration (0.7 2.4 g/L), treatment time (3.6 10.4 min) and temperature (23 57 C) on Log reductions of V. parahaemolyticus on cooked shrimp were investigated according to a central composite design, and the Log reductions were modeled using a response surface model. The result showed the established RS model had a goodness of fitting quantified by the parameters of R2 (0.982), lack of fit test (p > 0.05), the root-mean-squares error (RMSE = 0.15), the accuracy factor (Af = 1.10) and bias factor (Bf = 0.99). The model was validated with additional random 8 conditions within the range of the experimental domain. It showed that the established RS model possessed a good performance and suitability approved by RMSE (0.43), Af (1.28) and Bf (1.19). Moreover, the effects of the independent variable and their interactions on response value were ranked as X3 = X32 >> X1X3 > X2 > X1 according to Pareto charts and response surface plots analysis. The present work could serve as useful tools for predicting the inactivation of V. parahaemolyticus on cooked shrimp by AEW.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4 30 C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, ; the maximum growth rate, max; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 C). The results showed that AEW treatment could markedly (p < 0.05) decrease the growth rate ( max) and extend the lag time ( ) during the post-treatment storage at 30, 25, 20 and 15 C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p < 0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage.



Journal Cover

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, Escherichia coli


Pathogenic contamination is a food safety concern. This study was conducted to investigate the efficacy of neutral electrolyzed water (NEW) in killing pathogens, namely, Vibrio parahaemolyticus, Vibrio vulnificus, Salmonella Enteritidis, and Escherichia coli in shrimp. Pure cultures of each pathogen were submerged separately in NEW containing five different chlorine concentrations: 10, 30, 50, 70, and 100 ppm. For each concentration, three submersion times were tested: 1, 3, and 5 min. The population of V. parahaemolyticus was rapidly reduced even at low concentrations, but prolonged contact times caused only a slight reduction. V. vulnificus was gradually inhibited with increasing NEW concentrations and contact times. For the V. parahaemolyticus applications of 70 ppm for 5 min and of 100 ppm for 3 min, each eliminated 7 log CFU/ml. For V. vulnificus, applications of 50 ppm for 3 min and 100 ppm for 1 min, each eliminated 7 log CFU/ml. Salmonella Enteritidis and E. coli were slightly reduced by NEW. Applications of 50 ppm for 15 min and 10 ppm for 30 min completely eliminated 4.16 log CFU/g of V. parahaemolyticus in inoculated shrimp, while only a 1-log CFU/g reduction of V. vulnificus was detected. Soaking shrimp in 10 ppm NEW for 30 min did not affect its sensory quality. Our results suggest NEW could be an alternative sanitizer to improve the microbiological quality of seafood.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed water ice is a relatively new concept developed in food industry in recent years. The objective of this study was to investigate the effects of acidic electrolyzed water (AEW) ice, compared with tap water (TW) ice, on quality of shrimp (Litopenaeus vannamei) in dark condition. The chemical changes, microbiological changes and polyphenol oxidase (PPO) activity of shrimp stored in AEW ice or TW ice were measured periodically. The results showed that AEW ice significantly (p < 0.05) inhibited the changes of pH, the formation of total volatile basic nitrogen (TVBN), and the proliferation of total bacteria counts in shrimp. The diversity of bacterial flora in shrimp stored in AEW ice was greatly reduced according to the Shannon index and the average similarity coefficient based on PCR-DGGE method. Additionally, AEW ice could serve as a potential substance to inhibit PPO activity in shrimp. Based on above analysis, AEW ice is a valid post-harvest treatment for preserving the quality of seafood in dark condition.



Journal Cover

Microbe(s): Total Microbial Count


Electrolyzed water ice is a relatively new concept developed in food industry in recent years. The effect of acidic electrolyzed water (AEW) ice on preserving the quality of shrimp (Litopenaeus vannamei) was investigated. Physical, chemical, and microbiological changes of the shrimp were examined during the storage. The results showed that compared with tap water (TW) ice, AEW ice displayed a potential ability in limiting the pH changes of shrimp flesh and significantly (p < 0.05) retarded the changes of color difference and the formation of total volatile basic nitrogen (TVBN). And AEW ice treatment had no adverse effects on the firmness of shrimp. Conventional plate count enumeration and PCR-DGGE demonstrated that AEW ice had a capability of inhibiting growth of bacteria on raw shrimp, and the maximum reductions of population reached >1.0 log CFU/g (>90%) on the sixth day. Moreover, AEW ice was clearly more efficient in maintaining the initial attachments between muscle fibers in shrimp according to histological section analysis. On the basis of above analysis, AEW ice can be a new alternative of traditional sanitizer to better preserve the quality of seafood in the future.



Journal Cover

Microbe(s): (Listeria monocytogenes, Vibrio parahaemolyticus


The objective of this study was to evaluate physicochemical properties and bactericidal activities of acidic electrolyzed water (AEW) used or stored at different temperatures on shrimp. Three independent experiments were carried out. The first experiment was to evaluate the physicochemical properties and bactericidal activities of AEW used at three different temperatures (4, 20, 50 C) against food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) contamination on cooked shrimp at 1 or 5 min; the second one was to monitor the bactericidal activity of AEW used at two temperatures (20, 50 C) against total aerobic bacteria on raw shrimp at 5 min by conventional plate count method and PCR DGGE method; the last one was to examine the physicochemical properties and bactericidal activities of AEW (AEW1, AEW2) stored at two temperatures ( 18, 25 C) for 30 d against total aerobic bacteria on raw shrimp at 2 min. Results showed that AEW used at 50 C showed the best bactericidal activity, leading to a log reduction of 3.11 for V. parahaemolyticus, 1.96 for L. monocytogenes and 1.44 for total aerobic bacteria at 5 min, respectively. Conventional plate count and PCR DGGE (denaturing gradient gel electrophoresis) study further suggested that the bactericidal activity of AEW used at 50 C was higher than at 20 C. The loss of bactericidal activity of AEW stored at 18 C was less than that of stored at 25 C, and the ORP and ACC decreased more slowly than those of stored at 25 C. However, the ORP and ACC of AEW used at 50 C showed a remarkably faster decrease than that of used at 20 C. We suggest using AEW at 50 C to enhance bactericidal activity and storing at 18 C to keep the content of ACC and the bactericidal activity.



Journal Cover

Microbe(s): Vibrio parahaemolyticus


The objective of this study was to investigate the efficacy of acidic electrolyzed water (AEW) against Vibrio parahaemolyticus on shrimp. The shrimp was initially inoculated with V. parahaemolyticus(7 8 log CFU/g), and treated with AEW (AEW1 containing 51 mg/L of chlorine or AEW2 containing 78 mg/L of chlorine) or organic acids (2% AA and 2%LA) for 1 min or 5 min under different treated conditions. The effect of AEW was better than that of organic acids, the number of survival V. parahaemolyticus cells on shrimp was reduced by 0.9 log CFU/g after treatment for 5 min with AEW without vibration, while 1.0 log CFU/g bacteria cells reduced with vibration. No significant difference (p > 0.05) was observed between AEW and organic acids in the bactericidal activity with or without vibration. The effective order of temperatures on bactericidal activities of AEW was 50 C > 20 C > 4 C, and a 3.1 log CFU/g reduction of V. parahaemolyticus cells on shrimp was detected with treatment of AEW at 50 C. Mild heat greatly enhanced efficacy of electrolyzed water against V. parahaemolyticus. Basic electrolyzed water (BEW) (50 C) pretreatment combined with AEW (50 C) treatment remarkably reduced bacterial cells by 5.4 log CFU/g on shrimp after treatment for 5 min. There was a significant change in physicochemical properties (pH, ORP, ACC) of AEW, after it was used to wash shrimp (P < 0.05). This study suggests that BEW (50 C) pretreatment followed by AEW (50 C) treatment could be a possible method to effectively control V. parahaemolyticus contamination on shrimp.



Journal Cover

Microbe(s): Listeria monocytogenes, Morganella morganii


Listeria monocytogenes and Morganella morganii have been implicated in listeriosis outbreaks and histamine fish poisoning, respectively. Possible sources of contamination of food products include processing equipment, food handlers, and fish smokehouses. Treatment of food preparation surfaces and of whole fish during handling with agents such as, electrolyzed oxidizing (EO) water, could reduce biofilm formation on seafood products and in seafood processing plants. We examined the efficacy of EO water against L. monocytogenes and M. morganii biofilms using the MBEC Assay System (Innovotech Inc.), conveyor belt coupons, and raw fish surfaces. The MBEC Assay System was used to assess the activity of EO water against 24-h biofilms of 90 L. monocytogenes strains and five M. morganii strains. Biofilms were exposed to PBS or EO water for 0 (control), 5, 15, and 30 min. All bacterial isolates were susceptible (reduction of 7 log10CFU) to treatment with EO water for 5 min based on results obtained using this assay system. EO water was used to treat four L. monocytogenes strains and one M. morganii strain attached to conveyor belt coupons and fish surfaces. Three L. monocytogenes strains and one M. morganii strain on belt coupons were reduced by 12.5 log10CFU/cm2 by exposure (5 min) to EO water compared to exposure to sterile distilled water. Strain to strain variability in susceptibility to EO water was evidenced by the fact that numbers of one L. monocytogenes strain were not reduced by EO water treatment of belt surfaces. EO water was not effective against L. monocytogenes and M. morganii on fish surfaces as growth occurred during cold storage. These results suggest that exposure of conveyor belts to EO water for a minimum of 5 min could assist in the removal of some biofilms. Removal of food residue with continuous or intermittent spraying of food processing equipment (e.g., conveyor belts, slicers) could reduce or prevent further biofilm formation. Additional sanitizers must be investigated for activity against bacteria associated with raw fish.



Journal Cover

Microbe(s): Escherichia coli


Electrolyzed seawater (ESW) is reportedly an effective disinfectant for aquaculture equipment becaof its simple mechanism and cost effectiveness. The potential of electrolyzed seawater for oyster depuration was studied using different experiments. The first was determination of chlorine tolerance of oysters. Second was effectiveness of ESW against Escherichia coli in artificially contaminated oysters and third was effectiveness of ESW against E. coli in naturally contaminated oysters from two culture farms. Tolerance of oysters for Chlorine was studied by scanning electron microscopy (SEM) and histological observation demonstrating that more than 0.5 mg/L of chlorine was toxic while 0.2 mg/L was safe for the oysters. Oysters artificially contaminated with E. coli (230 MPN/100 mL, 16.5 C for 15 h) were depurated for 6, 24, and 48 h using ESW and UV irradiated seawater. E. coli counts in artificially contaminated oysters decreased to below the detection limit (30 E. coli MPN/100 g) after depuration with ESW for 24 h or UV irradiated seawater for 6 h. In experiments on naturally contaminated oysters E. coli counts decreased to below detection limits after depuration with ESW for 24 h. From these results, electrolysis of seawater is a useful method for post harvest elimination of E. coli from oysters.



Journal Cover

Microbe(s): Total Microbial Count


To study the changes in physicochemical properties of electrolyzed water during storage and its effect on inhibiting bacteria growth in shrimp, a of physicochemical properties, pH values, oxidation-reduction potential (ORP) and available chlorine concentration (ACC) and bacterial inhibition of four types of electrolyzed water on storage day 7, day 14, day 21 and day 30 at two storage conditions, (-182)C and room temperature, were analyzed. And the surviving bacteria population in the solution after electrolyzed water treatment was investigated. The results showed that pH value of most of electrolyzed water progressively increased, while ORP and ACC decreased gradually. The values of pH and ACC of electrolyzed water ice were higher than that of electrolyzed water stored in the room temperature, while ORP of electrolyzed water ice was lower than that of electrolyzed water kept in the room temperature. The bactericidal effect of electrolyzed water was less effective after 30 d of storage than that before storage, and the bactericidal effect of electrolyzed water ice was better than that of electrolyzed water kept in the room temperature. It is suggested that the stored electrolyzed water in solid form holds the content of ACC, and improves the bactericidal capacity for shrimp.



Journal Cover

Microbe(s): Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Morganella morganii, Proteus hauseri


This study investigated efficacy of electrolyzed oxidizing water (EO water) and ice (EO ice) treatments in reducing histamine-producing bacteria (Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Morganella morganii and Proteus hauseri) on food contact surfaces (ceramic tile and stainless steel) and fish skin (Atlantic salmon and yellowfin tuna). Soaking ceramic tile and stainless steel in EO water (50 ppm chlorine) for 5 min inactivated inoculated bacteria on the surface (>0.92 to >5.4 log CFU/cm2 reductions). E. cloacae, K. pneumoniae and P. hauseri did not survive well on fish skin. Soaking salmon skin in EO water (100 ppm chlorine) for 120 min resulted in 1.3 and 2.2 log CFU/cm2 reductions of E. aerogenes and M. morganii, respectively. A treatment of EO ice (100 ppm chlorine) for 24 h was capable of reducing E. aerogenes and M. morganii on tuna skin by 2.4 and 3.5 log CFU/cm2, respectively. EO water and EO ice can be used as post-harvest treatments for reducing histamine-producing bacteria on food contact surfaces and fish skin.



Journal Cover

Microbe(s): Total Microbial Count


This study was to investigate the electrolyzed water washing efficiency on the inhibition of bacteria for raw shrimp.The bactericidal activities on raw shrimp treated by four types of electrolyzed water(AEW1,AEW2,MEW1 and MEW2) and two types of organic acid(2%LA and 2%AA) were compared.Sterilize tap water was used as control.The bactericidal activity of on raw shrimp treated with 2%AA was better than electrolyzed water under no vibration condition,Raw shrimp treated with AEW1 was better than 2%AA under vibration condition,tap water treatment was worse than electrolyzed water or organic acid under both no vibration and vibration conditions.Almost no bacterial colony was observed except for tap water.The organoleptic properties of raw shrimp were barely affected by four types of electrolyzed water.The color,odor and overall acceptability of raw shrimp were slightly affected by 2%LA,the odor of raw shrimp was greatly affected by 2%AA,and the muscle tissue and overall acceptability of raw shrimp were slightly affected by 2%AA.Electrolyzed water can be used as cleaning solution to replace tap water in raw shrimp washing in shrimp processing industry.



Journal Cover

Microbe(s): Escherichia coli K12, Listeria innocua, Pseudomonas putida


This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PROSAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PROSAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of < 1 log CFU was obtained for the fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for crosscontamination.



Journal Cover

Microbe(s): Escherichia coli, Vibrio parahaemolyticus


For reducing bacterial contamination, electrolyzed oxidizing water (EO water) has been used to reduce microbial population on seafood and platform of fish retailer. The specimens of tilapia were inoculated with Escherichia coli and Vibrio parahaemolyticus, and then soaked into EO water for up to 10 min. EO water achieved additional 0.7 log CFU/cm2 reduction than tap water on E. coli after 1 min treatment and additional treatment time did not achieved additional reduction. EO water treatment also reduced V. parahaemolyticus, by 1.5 log CFU/cm2 after 5 min treatment and achieved 2.6 log CFU/cm2 reduction after 10 min. The pathogenic bacteria were not detected in EO water after soaking treatment. In addition, EO water could effectively disinfect the platform of fish retailer in traditional markets and fish markets.



Journal Cover

Microbe(s): Vibrio parahaemolyticus, Vibrio vulnificus


Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 107 CFU/ml) and V. vulnificus (8.69 107 CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (>6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 104 and 106 most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (>12 h) of oysters in EO water containing high levels of chlorine (>30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to6hto avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.



Journal Cover

Microbe(s): Total Microbial Count


Among different fish slices used for sashimi preparation, tuna is the most popular and preferable fish type for Taiwanese people. To improve the hygienic quality of fish slices, electrolyzed (EO) water containing 10, 50, and 100 mg/L chlorine, was used in combination with CO gas treatment. Effect of different treatment on aerobic plate count (APC), volatile basic nitrogen (VBN), K value, and Hunter L*, a*, b* values of yellow-fin tuna steak during storage (4 C and 20 C) were evaluated. It was found that APC, VBN, and K values increased with storage time for all treatment. Except for K value, APC and VBN of tuna steak treated with the combination of more than 50 mg/L chlorine EO water and CO gas had the lowest value after 8 d of refrigerated storage. Hunter a* value of tuna steak treated with only CO gas was the highest, followed by those treated with EO water and CO gas. These results demonstrated that EO water containing 50 mg/L chlorine combined with CO gas treatment in tuna fish steak would be an effective method for enhancing the hygienic quality and freshness for tuna meat and extending refrigerated storage time. Tuna treated with EO water containing 100 mg/L chlorine and CO gas combination had the lowest APC immediately after treatment and reduced further to below detection limit after 1 mo frozen storage at 20 C.



Journal Cover

Microbe(s): Listeria monocytogenes


The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 5 cm2) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40 0.66 log cfu/chip on clean surfaces and 0.78 1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p < 0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.



Journal Cover

Microbe(s): Listeria monocytogenes


The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 5 cm2) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40 0.66 log cfu/chip on clean surfaces and 0.78 1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p < 0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Listeria monocytogenes


Raw fish is prone to the risk of microbial outbreaks due to contamination by pathogenic microorganisms, such as Escherichia coli O157:H7 and Listeria monocytogenes. Therefore, it is essential to treat raw fish to inactivate pathogenic microorganisms. Electrolyzed Oxidizing Water (EO) is a novel antimicrobial agent containing acidic solution with a pH of 2.6, Oxidation Reduction Potential (ORP) of 1150 mV, and 70 90 ppm free chlorine, and alkaline solution with a pH of 11.4 and ORP of 795 mV. This study was undertaken to evaluate the efficacy of acidic EO water treatment and alkaline EO water treatment followed by acidic EO water treatment at various temperatures for the inactivation of E. coli O157:H7 and L. monocytogenes Scott A on the muscle and skin surfaces of inoculated salmon fillets. Inoculated salmon fillets were treated with acidic EO water at 22 and 35 C and 90 ppm free-chlorine solution as control at 22 C for 2, 4, 8, 16, 32, and 64 min. The acidic EO water treatments resulted in a reduction of L. monocytogenes Scott A population in the range of 0.40 log10 CFU/g (60%) at 22 C to 1.12 log10 CFU/g (92.3%) at 35 C. Treatment of inoculated salmon fillets with acidic EO water reduced E. coli O157:H7 populations by 0.49 log10 CFU/g (67%) at 22 C and 1.07 log10 CFU/g (91.1%) at 35 C. The maximum reduction with chlorine solution (control) was 1.46 log10 CFU/g (96.3%) for E. coli O157:H7 and 1.3 log10 CFU/g (95.3%) for L. monocytogenes Scott A at 64 min. A response surface model was developed for alkaline treatment followed by acidic EO water treatment to predict treatment times in the range of 5 30 min and temperatures in the range of 22 35 C for effective treatment with alkaline EO water followed by acidic water, alkaline and acidic water treatments. Response surface analysis demonstrated maximum log reductions of 1.33 log10 CFU/g (95.3%) for E. coli O157:H7 and 1.09 log10 CFU/g (91.9%) for L. monocytogenes Scott A. Data collected from the treatments was used to develop empirical models as a function of treatment times and temperature for prediction of population of E. coli O157:H7 and L. monocytogenes Scott A. Correlations (R2) of 0.52 and 0.77 were obtained between model predicted and experimental log10 reduction for E. coli O157:H7 and L. monocytogenes Scott A reductions, respectively. These results clearly indicated that EO water has a potential to be used for decontamination of raw fish.



Journal Cover

Microbe(s): Total Microbial Count


The effects of electrolyzed water ice (EW-ice), compared with traditional tap water ice (TW-ice), on the microbiological, chemical, and sensory quality of Pacific saury (Cololabis saira) stored for a period of up to 30 days at 4 C were evaluated. EW-ice with active chlorine at a concentration of 34 mg/kg was prepared from weak acidic electrolyzed water, whose pH, oxidation-reduction potential, and chlorine content were 5, 866 mV, and 47 mg/liter, respectively. Microbiological analysis showed that EW-ice, compared with TW-ice, markedly inhibited the growth of both aerobic and psychrotrophic bacteria in saury flesh during refrigerated storage, primarily because of the action of active chlorine. Chemical analysis revealed that EW-ice retarded the formation of volatile basic nitrogen and thiobarbituric acid reactive substances and reduced the accumulation of alkaline compounds in the fish flesh in comparison with TW-ice. Sensory analysis confirmed that the freshness of saury was better preserved in EW-ice than in TW-ice and showed that the saury stored in EW-ice had a shelf life that was about 4 to 5 days longer than the fish stored in TW-ice.



Journal Cover

Microbe(s): Total Microbial Count


Aims: To evaluate the efficacy of electrolysed NaCl solutions (EW) for disinfecting bacterial isolates from carp, and the potential application of EW to reducing the bacterial load in whole carp and carp fillets. Methods and Results: EW was produced by using a two-compartment batch-type electrolysed apparatus. Pure cultures (in vitro), whole carp (skin surface) and carp fillets were treated with EW to detect its antimicrobial effects. The anodic solution [EW (+)] completely inhibited growth of the isolates. Furthermore, dipping the fish samples in EW (+) reduced the mean total count of aerobic bacteria on the skin of whole carp and in fillets by 2 8 and 2 0 log10, respectively. The cathodic solution [EW ( )] also reduced growth of the isolates from carp by ca 1 0 log10. Moreover, the total counts of aerobic bacteria in whole carp (on the skin) and fillets were reduced by 1 28 and 0 82 log10, respectively. Conclusions: EW (+) has a strong bactericidal effect on bacteria isolated from carp. Significance and Impact of the Study: Treatment with EW (+) could extend the shelf life of these fish.



Journal Cover

Microbe(s): Escherichia coli O157: H7, Listeria monocytogenes


Raw fish is prone to risk of microbial outbreaks due to contamination of pathogenic microorganisms. Escherichia coli O157:H7 and Listeria monocytogenes are among the pathogens associated with raw fish. Therefore, it is important to treat raw fish to inactivate pathogenic microorganisms. Electrolyzed oxidizing water is novel antimicrobial agent containing acidic solution with a pH of 2.6- 2.9, ORP of 1120 1180 mV, and 76-90 ppm free chlorine, and alkaline solution with a pH of 11.5 and ORP of 795 mV. This study was undertaken to evaluate the efficacy of electrolyzed oxidizing (EO) water for inactivation of E. coli O157:H7 and L. monocytogenes Scott A on the surfaces (muscle and skin surfaces) of inoculated salmon fillets. Inoculated salmon fillets were treated only with acidic EO water at 22C and 35C and sodium hypochlorite solution (90 ppm free chlorine) as control at 22C for 2, 4, 8, 16, 32, and 64 min, respectively. For the treatment with alkaline EO water followed by acidic EO water, a response surface model was developed to predict effective times in the range of 5-30 min and temperatures in the range of 22-35C for both alkaline and acidic water treatments. The acidic EO water treatments resulted in reductions of population of L. monocytogenes Scott A ranging from 0.40 log10 CFU/g (60 %) at 22oC to 1.12 log10 CFU/g (92.3 %) at 35oC. Treatment of inoculated salmon fillets in acidic EO water reduced E. coli O157:H7 populations by 0.49 log10 CFU/g (67 %) 22C and 1.07 log10 CFU/g (91.1 %) at 35C, respectively. Response surface analysis for alkaline EO water treatment followed by acidic treatment demonstrated that, maximum log reduction of 1.33 log10 CFU/g (95.3 %) for E. coli O157:H7 and 1.09 log10 CFU/g (91.9 %) for L. monocytogenes Scott A.